- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hood, Kendric (2)
-
Guan, Qiang (1)
-
Mao, Hanbin (1)
-
Nesterenko, Mikhail (1)
-
Oglio, Joseph (1)
-
Sharma, Gokarna (1)
-
Shen, Hao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Catalytic processes are used in about 1/3 of US manufacturing, from the field of chemical engineering to renewable energy. Assessing the activity of single-molecules, or individual molecules, is necessary to the development of efficient catalysts. Their heterogeneity structure leads to particle-specific catalytic activity. Experimentation with single-molecules can be time consuming and difficult. We purpose a Machine learning (ML) model that allows chemical researchers to run shorter single-molecule experiments to obtain the same level of results. We use common and widely understood ML methods to reduce complexity and enable accessibility to the chemical engineering community. We reduce the experiment time by up to 83%. Our evaluation shows that a small data set is sufficient to train an acceptable model. 300 experiments are needed, including the validation set. We use a well understood multilayer perceptron (MLP) model. We show that more complex models are not necessary and simpler methods are not sufficient.more » « less
-
Oglio, Joseph; Hood, Kendric; Sharma, Gokarna; Nesterenko, Mikhail (, The 9th International Conference on Networked Systems (NETYS))
An official website of the United States government
